Reg. No.:				
-10B: 11011				

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI – 628 502.

PG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2025.

(For those admitted in June 2025 and later)

PROGRAMME AND BRANCH: M.Sc., MATHEMATICS

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
I	PART - III	CORE ELECTIVE -1	P25MA1E1B	GRAPH THEORY AND ITS APPLICATIONS

Date & Session: 10.11.2025/FN Time: 3 hours Maximum: 75 Marks

Date	& Sessi	on : 10	J.11.2025/FN	Time: 3 nou	ırs	Maximum: 75 Marks
Course Outcome	Bloom's K-level	Q. No.	SECTION – A (10 X 1 = 10 Marks) Answer ALL Questions.			
CO1	K1	1.	A graph is if both a) infinite			finite. d) simple
CO1	K2	2.	same.	has positive length b) triangle	_	and terminus are the
CO2	K1	3.	A graph is if a) walk	it contains a Hami b) hamiltonian		d) triangle
CO2	K2	4.	Every connected g a) tree	-	c) walk	d) spanning tree
CO3	K1	5.	Every 3-regular gra a) path			matching. d) components
CO3	K2	6.	Petersen graph is _ a) 3			d) 1
CO4	K1	7.	in G.			vertices of S are adjacent ependent d) Spanning
CO4	K2	8.	A of a simple a loop			that G[S] is complete. d) path
CO5	K1	9.	Every critical graph a) clique		c) loop	d) walk
CO5	K2	10.	If G is chromatica) 4			f K ₄ .
Course Outcome	Bloom's K-level	Q. No.	Answe	<u>SECTION – B (5</u> er <u>ALL</u> Questions		•
CO1	K2	11a.	Show that in any gr	•	of vertices of o	odd degree is even.
CO1	K2	11b.	Explain about the i suitable examples.	•	•	es in a graph with
CO2	K2	12a.	Prove that "If G is a	•	· 1". DR)	

CO2	K2	12b.	Write the proof of" If G is a simple graph with v≥3 and δ≥v/2, then G Hamiltonian".
CO3	КЗ	13a.	Prove that,"In a bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in a minimum covering". (OR)
CO3	КЗ	13b.	If G is bipartite, then prove that $\chi' = \Delta$.
CO4	КЗ	14a.	Show that a set $S \subseteq V$ is an independent set of G if and only if $V \setminus S$ is a covering of G .
CO4	КЗ	14b.	Show that if $\delta > 0$ then $\alpha' + \beta' = v$.
CO5	K4	15a.	Analyze that, "If G is k -critical, then $\delta \ge k$ -1". (OR)
CO5	K4	15b.	Examine that " If G is simple, then π_k (G) = π_k (G - e) - π_k (G •e) for any edge e of G".

Course Outcome	Bloom's K-level	Q. No	$\frac{\text{SECTION} - C \text{ (5 X 8 = 40 Marks)}}{\text{Answer } \frac{\text{ALL}}{\text{Questions choosing either (a) or (b)}}$
CO1	K4	16a.	Analyze that a graph is bipartite if and only if it contains no odd cycle. (OR)
CO1	K4	16b.	Explain briefly about the paths and components in a graph with examples.
CO2	K5	17a.	"A Connected graph is a tree if and only if every edge is a cut edge"-Justify. (OR)
CO2	K5	17b.	Explain the proof of chavatal theorem.
CO3	K5	18a.	Prove or disprove that,"A matching M in G is a maximum matching if and only if G contains no M-augmenting path". (OR)
CO3	K5	18b.	Explain the statement and proof of vizing's Theorem.
CO4	K5	19a.	Evaluate that $r(k,l) \le \binom{k+l-2}{k-1}$ (OR)
CO4	K5	19b.	Explain the statement and proof of Turan's Theorem .
CO5	К6	20a.	If G is a connected simple graph and is neither an odd cycle nor a complete graph, then construct a proof of $\chi \leq \Delta$. (OR)
CO5	К6	20b.	Formulate a reasoning that the statement "For any positive integer k, there exists a k-chromatic graph containing no triangle".